Приложение к журналу
«Современные проблемы науки и образования»
ISSN - 1817-6321


PDF-версия статьи Титульная страница журнала PDF-версия статьи
ОСОБЕННОСТИ ОРГАНИЗАЦИИ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ РЕШЕНИЮ АЛГЕБРАИЧЕСКИХ ЗАДАЧ РАЦИОНАЛЬНЫМИ СПОСОБАМИ

Южно-Казахстанский государственный университет им. М. Ауезова, Казахстан, Шымкент


В обучении математике всё большее значение придаётся самостоятельной деятельности учащихся. Основной формой, средством организации и управления учебной деятельностью школьников является самостоятельная работа. Т.И. Шамовой показано, что учебная деятельность в процессе учения может протекать на репродуктивном, частично-поисковом и исследовательском (творческом) уровнях познавательной деятельности учащихся. В связи с этим в теории обучения выделяются три типа самостоятельной работы, адекватных трем уровням познавательной деятельности учащихся в процессе учения - репродуктивные, частично-поисковые (или поисковые) и исследовательские (творческие), причем ядром самостоятельной работы каждого типа является учебная задача, адекватная этому типу.

При решении алгебраических задач на составление уравнений как и при решении других задач могут быть получены различные стратегия поиска их решения, а так же и различные способы их решения. При сравнении различных способов решения задачи встаёт вопрос о более рациональном решении из найденных.

Обучение учащихся рациональным способам решения алгебраических задач связано сложностью таких задач.

Во всех этих исследованиях внутренняя структура задачи, как объективная характеристика, не исследуется. В связи с этим сложность и трудность задачи определяются, как правило, через процесс её решения. Это не позволяет выявить закономерные взаимосвязи между сложностью (трудностью) задачи и сложностью (трудностью) процесса её решения, а также между сложностью и трудностью задачи.

Трудность задачи есть психолого-дидактическая категория и представляет собой совокупность многих факторов, зависящих от особенностей личности таких как степень ее новизны, интеллектуальные возможности учащегося, его потребности и интересы, опыт решения задач, уровень владения интеллектуальными и практическими умениями и др. Однако, основными компонентами трудности задач:; как объекта является степень ее проблемности и сложности.

Как известно, поиск решения складывается из нескольких этапов, среди которых особенно важны два следующих:

1) На первом этапе ученик анализирует задание по принятию решения, устанавливает совокупность действий, описывает параметры и переменные, которые участвуют в них. Это позволяет установить тип задания. С его помощью исследователь может понять какой характер имеет задание: детерминистский (при котором каждая альтернатива приводит к однозначно определенным результатам) или вероятностный (в котором участвуют случайные переменные с известными вероятностями распределения). Познание структуры задания имеет основное значение, т.к. от него зависят дальнейшие этапы работы.

2) На втором этапе ученик формулирует рациональное решение. Метод решения зависит только от структуры задания.

Решение одной задачи несколькими способами, даже без оценки их с точки зрения рациональности, имеет большее значение для математического развития учащихся, чем решения многих задач, но одним и тем же способом.

Рассмотрим вопрос о выборе неизвестных при решении текстовых алгебраических задач на составление уравнений. При решении текстовых алгебраических задач составлением уравнений многие считают, что за неизвестное удобно обозначать искомую величину. И это отрабатывается на протяжении всех лет обучения с 5 по 9 класс. Однако, встречается ряд задач, когда при определённой стратегии поиска ее решения обозначение искомой величины не даёт желаемого результата, и ученики, не подготовленные к решению "нерациональным" способом не справляются с ними.

Многие текстовые алгебраические задачи могут быть решены как составлением одного уравнения с одним неизвестным, так и составлением системы уравнений с несколькими неизвестными. В большинстве случаев последнее решение проще, чем первое, но решение системы уравнений может оказаться сложнее, чем решение уравнения.

Таким образом, всё вышесказанное приводит нас к выводу о том, что в общем виде нельзя дать строгого определения наиболее рационального решения, которое можно было бы применить в качестве критерия при оценке простоты решения. Поэтому понятие рациональности решения следует раскрывать перед учащимися, посредством разбора как можно большего числа конкретных примеров.

Литература:

1. Шамова Т.И. К вопросу о методах преподавания и учения. // Советская педагогика, 1974, №1. – С.40-50.


ОПУБЛИКОВАНО

Жунисбекова Ж.А., Жунисбекова Д.А., Абдрахманова А.Н., Алишева С.С., Жораева С.Б. ОСОБЕННОСТИ ОРГАНИЗАЦИИ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ РЕШЕНИЮ АЛГЕБРАИЧЕСКИХ ЗАДАЧ РАЦИОНАЛЬНЫМИ СПОСОБАМИ. // Современные проблемы науки и образования - 2013.-№6. (приложение "Педагогические науки"). - C. 25