Разработка автоматизированной справочной системы для обслуживания населения при использовании теории графов

Карибай Г.Ж., Момбекова С.С, Белесорва Д.Т.

Южно-Казахстанский государственный университет имени М.Ауезова, Казахстан,Шымкент

В этой статье рассматривается информационно-справочная система управления туризмом. Здесь есть три объекта: Туркестан, Чимкент и Созак. Все эти три объекты богаты святым местам. Моя задача в том как оптимально проходить все эти святыни не теряя лишнего времени. Для этого я использую метод Флетчера для оптимального решения задачи.

Допустим, мы имеем множества имеющий каждый по элементами.

Каждое множество задано центром. Задача заключается в следующем: при заданном ограниченном значений мы должны побывать в каждой точке этих множеств. На языке графов получается каждое множество , это есть связанный граф заданным центральной точкой.

Теперь, выше построенную задачу можно свести к нахождению гамильтоновы пути между множествами и нахождения гамильтоново пути внутри множества . схематически выглядит для этих множеств следующим образом:

$\sqcup K$	этой	задаче	ОНЖОМ	свести	множеств	о практи	ческих	задач.	Напри	имер,	оптим	иальная	перевозка	грузов	ПО
жел	езнод	орожной	линии	между	регионами	или мож	но госу	дарства	ами. Т	очно	гакже	перевоз	ка грузов	по авиаі	ции
меж	ду ре	гионами	. Особе	енно, к	этой задач	е можно	свести	пробл	іему п	осеще	ния д	цуховных	к центров	туриста	ми.
Под	робно	рассмот	рим эу	задачу.											

ΠЛ	опустим	залан 3	3 множества		пент	пы вокп	VE KOT	опых	имеются	точки	кото	пых ту	листы	лопжны	посетить
$-\mu$	(OII y CI FIIVI,	эадан э	MIIOMCCIBa	, ,	цент	ры вокр	yı KO	Opbin	I IIIICIO I CA	TO IKH,	KOIO	рылі	pricibi	должив	moccinib.

- □Для ЮКО возьмем 3 множества Туркестан, Шымкент, Созак. В первую очередь из-за ограниченности времени мы должны геометрически оптимизировать гамильтонов путь.
- □Допустим, у туриста имеется дней. За 20 дней он должен посетить все точки находящиеся в этом регионе. При оптимизации перехода из центров выделяется время. За этот время мы оптимизируем путь перехода от множества к множеству.
- □Если А>В, то выбираем маршрут В иначе маршрут А. после оптимизации переходов между множествами будем оптимизировать путь внутри множества. Это означает у туриста для посещения туристических точек в Туркестане имеется времени, в Созаке времени и времени в Шымкенте. В результате получим три связанных графа. В каждом связанном графе имеем связанный граф. Тем самым задача решена.

Литература

- 1. □ Н. Берж., Теории графов и ее приложения. М.:Мир, 1966
- 2. □ Н.Кристофидес., Теории графов, алгоритмический подход. М.:Мир, 1978
- 3. □В.М.Португал., С.П.Салмин. Информационно-справочная система предприятия. М.: Издательство «Знание», 1976